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Abstract

The Comprehensive Test Ban Treaty (CTBT) is gaining renewed attention in light of 
growing worldwide interest in mitigating risks of nuclear weapons proliferation and 
testing.  Since the International Monitoring System (IMS) installed the first suite of 
sensors in the late 1990’s, the IMS network has steadily progressed, providing valuable 
support for event diagnostics.  This progress was highlighted at the recent International 
Scientific Studies (ISS) Conference in Vienna in June 2009, where scientists and domain 
experts met with policy makers to assess the current status of the CTBT Verification 
System.

A strategic theme within the ISS Conference centered on exploring opportunities for 
further enhancing the detection and localization accuracy of low magnitude events by 
drawing upon modern tools and techniques for machine learning and large-scale data 
analysis.  Several promising approaches for data exploitation were presented at the 
Conference.  These are summarized in a companion report.  In this paper, we introduce 
essential concepts in machine learning and assess techniques which could provide both 
incremental and comprehensive value for event discrimination by increasing the accuracy 
of the final data product, refining On-Site-Inspection (OSI) conclusions, and potentially 
reducing the cost of future network operations.

Introduction

The International Monitoring System (IMS) of the CTBTO is comprised of physical 
sensor stations (seismic, hydroacoustic, and infrasound) connected by a worldwide 
communications network to a centralized processing system in Vienna, the International 
Data Center.  The IDC operates continuously and in real time, performing station 
processing (analysis and reduction of raw seismic sensor data to detect and classify signal 
arrivals) and network processing (association of phase arrivals with hypothesized events).  
Fully automated processing of the signals to produce a reliable catalogue of event reports 
is currently beyond the state of the art, so the IDC analysts must post-process the output 
from the automated system to generate higher quality event bulletins for further 
distribution.  Errors in automated processing include false detections and missed 
detections caused by station noise; incorrect classification of arrivals; and incorrect 
associations.  Thus, opportunities exist at all levels of the IDC pipeline to apply
techniques from machine learning to improve the accuracy of the final output.1

We begin by explaining the basic ideas of machine learning, with special emphasis on 
data-driven and model-driven methods. We clarify how these methods may be applied to
improve the performance of various parts of the IDC processing pipeline.  Multiple teams 
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at the ISS Conference presented preliminary results that demonstrated improvements in
phase classification as well as rejection of spurious associations via some of these 
methods (Kuzma et al., 2009).

The second section of the paper proposes a more radical revision of the IDC data 
processing approach using a model-driven Bayesian methodology to perform 
probabilistic inferencing from the signal evidence with a vertically integrated 
probabilistic model of the entire signal generation process (from event to waveform).  
This approach has several potential advantages, including globally optimal association; 
proper handling of non-detections as evidence; improved low-amplitude signal detection 
and noise rejection; continually self-calibrating sensor model; and optimal fusion of 
multiple sensor modalities.

We conclude that incorporating machine learning methods into the IDC framework could 
indeed improve the detection and localization of low-magnitude events, provide more 
confidence in the final output, and reduce the load on human analysts.  The principal 
obstacles to rapid instantiation of machine learning methods within an operational 
context, however, are the availability of raw data for testing during algorithm 
development and the difficulty of evaluating and benchmarking the impact of local 
improvements on the overall system.  We outline a programmatic construct for 
overcoming these hurdles by proposing to coordinate and drive data-related R&D 
initiatives through a virtual Data Exploitation Center (vDEC), under the auspices of the 
CTBTO, for the evolution and prove-in of next generation data processing methods for 
CTBT verification.

Machine learning

The field of machine learning covers all computational methods for improving 
performance based on experience.  The range of methods and settings is too vast to be 
sketched here in completeness, but there is a small set of key questions that must be 
answered to constrain the possibilities for choosing a learning method:

 Which component of the overall system must be improved?
 How is that component represented – e.g., a weighted linear function, a 

complicated decision tree, or an impenetrable chunk of machine code?
 What existing data are relevant to that component?
 Do the data include the “right answers” – i.e., correct outputs for the component 

given the inputs?
 What knowledge is already available to constrain and inform the design of the 

component?

This paper examines just two families of methods.  The first, supervised model-free 
learning is appropriate for cases where data are plentiful and correct outputs are 
available, but little is known about the correct design of the component(s).  The second, 
Bayesian model-based learning is effective in situations when significant prior 
knowledge is available but does not require advance knowledge of the correct outputs for 
each component.
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Supervised model-free learning

The key idea here is many hundreds of years old: find a hypothesis that maximizes some 
combination of simplicity and degree of fit to the data.  For example, suppose the 
component to be learned is responsible for classifying detected seismic signals as P 
waves or S waves.  An unknown function f determines the true classification given the 
signal. In the supervised setting, we assume that the learning algorithm is provided 
example signals xi along with the correct label f (xi) for each – perhaps obtained from the 
final Reviewed Event Bulletin (REB) or other authoritative source.  The goal of learning 
is then to find a hypothesis h that is “close” to f in a precise sense: given a sufficient 
training set of examples, h should agree with f on the classification of almost all members 
of a previously unseen test set of examples (that are supplied without labels).  The 
framework of machine learning provides theoretical guarantees on the ability of learning 
algorithms to meet this criterion and predicts the amount of data required to be effective.

This seemingly simple task encompasses a large range of activities, roughly characterized 
by the nature of the inputs, outputs, and the family of hypotheses considered.  For 
example, xi might be a purported sentence of English, f (xi) the label “ungrammatical,” 
and h a grammar; or xi might be an image,  f (xi) the label “giraffe,” and h a kernelized 
linear separator applied to the outputs of a fixed battery of feature extractors on the 
image.  Other popular hypothesis classes include decision trees, neural networks, logistic 
regression functions, nearest-neighbor classifiers, and various forms of ensemble 
classifiers that generate and combine multiple hypotheses.

Supervised machine learning methods are readily applicable to IDC data sets for assisting 
the final diagnosis.  Such methods were illustrated at the ISS Conference last June.  
Several posters showed the value of incorporating off-the-shelf learning and classification 
methods to improve the accuracy of phase discrimination in station processing and to 
detect spurious events proposed during network processing.  Examples of the benefits 
from data fusion were plentiful, and design concepts were presented for improving 
seismic database query processing, borrowing ideas from the Web-search environment.  
The Best Poster award at the Conference went to a team that trained neural networks to 
detect false events in the SEL1 bulletin.  These approaches, many of which could 
significantly enhance the current IDC pipeline, are elaborated upon in a separate report 
(Kuzma et al., 2009). 

However, none of these supervised learning methods, as currently conceived, are likely to 
overcome the fundamental limitations of bottom-up, localized processing of signals and 
detections.  Seismic data analysis, on a global scale, cannot decompose into independent
local decisions about detections and associations; the ambiguities inherent in the data are 
best resolved by a comprehensive analysis of the kind offered by integrated probabilistic 
inference methods.  Moreover, such methods can easily integrate the best earth models as 
well as detailed models of sensor artifacts and failures, and missing data.  Such an
approach is discussed in the following sections. 

Bayesian model-based learning
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When there is substantial prior knowledge available – for example, that of seismic phases 
and signal propagation – this knowledge can often constrain the space of hypotheses 
considered and thereby improve prediction accuracy and reduce data requirements.
An approach that achieves these goals is Bayesian model-based learning. When applied 
to problems involving sensor data, two generative models are developed: 

 P(world) describes a prior distribution over events of interest in the world; it may 
include a prior over the model parameters and structure, allowing these to be 
updated in the light of additional data.

 P(signal | world) describes the sensor model, i.e., the process by which events in 
the world generate sensor measurements.

Given a signal, we can compute a posterior distribution over the events of interest given 
that signal, according to Bayes’ Rule:

    P(world | signal) = P(signal | world) P(world)

where  is a normalization constant.  Of course, the complexities of actual models mean 
that this computation is often far from trivial.

Typically, Bayesian learning methods can continuously adapt the model parameters to 
improve the degree of fit to the data, as a side effect of performing the inferences 
required to interpret the data according to the equation above.  This adaptation requires 
no “ground truth” (unlike supervised learning methods) and hence provides a technical 
foundation for continuous self-calibration and sensor diagnostics.

Speech recognition is perhaps the best-known example of Bayesian model-based learning 
and inference.  In speech recognition, P(world) is a generative model of word sequences 
and P(signal | world) is a generative model of acoustic features given words, mediated 
by complex pronunciation models for words in terms of their constituent sounds.  The 
parameters of such models are estimated from thousands of hours of speech data, leading 
to very high performance in many commercial applications.  Interestingly, training on 
isolated words does not work, because in real speech, the pronunciation of a word 
depends strongly on the words preceding and following it due to physical constraints on 
the motion of the lips, tongue, jaw, etc.  Because of these low-level inter-word 
dependencies, as well as high-level constraints on plausible word sequences, each word 
helps disambiguate other words.  Thus, a bottom-up approach does not work for speech 
signals; and as we will see, the same lesson applies for seismic analysis.

Vertically integrated seismic analysis

While the current IDC data analysis pipeline is functioning effectively, we believe that its
overall serial nature imposes unnecessary limitations on system performance that can be 
largely overcome by a vertically integrated probabilistic approach.  Recent advances in 
modeling capabilities and in general-purpose inference algorithms such as Markov Chain 
Monte Carlo (MCMC) suggest that it is in fact possible to address problems as complex 
as nuclear detonation detection via a completely integrated, model-based probabilistic 
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system derived from first principles.  A research prototype system (VISA-CV, for 
Vertically Integrated Seismic Analysis for CTBT Verification) is currently under 
development with the goals of testing it within the IDC domain (Arora et. al., 2009a, 
2009b).  The VISA-CV generative model begins with a two-component generative 
process for events: natural events occur according to a Poisson process with spatially 
varying intensity (augmented with secondary processes for aftershocks) and a Gutenberg-
Richter magnitude distribution, while man-made events are assumed to occur with a 
uniform spatial distribution.  Signals from the events propagate according to a travel-time 
model (initially IASPEI91 with added Gaussian uncertainty) and are selectively 
attenuated in different frequency ranges and phases.  The detected signal consists of 
arriving waveforms and local noise, modeled by station-specific noise models and 
response functions.  Sources of uncertainty include local station noise, drifting station 
response function, miscalibration and sensor malfunction, uncertainty in the waveform 
travel time model, and frequency and phase absorption, all of which are spatially varying; 
as well as uncertainty in the model of event and aftershock locations, times, magnitudes, 
and waveform generation.  All these uncertainties can be represented explicitly and 
estimated over time.

Once data samples – currently, just the IDC arrival detections but eventually the full 
waveforms – are supplied to the system, MCMC probabilistically infers a posterior 
distribution over possible event locations, times, and magnitudes. In essence, MCMC 
efficiently samples over hypothetical worlds to obtain estimates that converge to the true 
posterior given the evidence (see Figure 1).  The fact that MCMC computes posterior 
probabilities – the best possible answers given the data – takes the algorithm itself off the 
table; to get better answers, one must either improve the model or add more sensors.
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Figure 1: A sample from the VISA-CV MCMC inference process applied to seismic traces from a 
simulated one-dimensional world. The x-axis shows time and the y-axis shows position in the 1-D space. 
For the five stations considered here, each signal trace is shown as a series of impulses of different 
magnitude. Hypothesized events are shown as squares with area proportional to event magnitude; waves 
propagated along the color-coded rays, generating impulses when they intersect the stations. MCMC 
generates samples by adding, deleting, and moving events, adjusting propagation times and arrival 
magnitudes, and changing associations among events and detections. Although the vast majority of the 
detected impulses are noise-induced – some much larger than the real detections – the system is able to 
recover the true events correctly.

One important benefit of the vertically integrated approach is that signals need not be 
analyzed at each station in isolation. Suppose that a hypothetical event has been formed 
from detections at three other stations, such that the event’s location, time, and magnitude 
imply an arrival at a fourth station in the time interval [t - t, t +t].  If a signal is present 
– even well below the usual SNR threshold – it can be picked and associated with the 
event.  On the other hand, if no signal is present, the event is disconfirmed by the 
(absence of) evidence.  The smaller the value of t, the more pronounced this effect will 
be. Thus, a strong, and thus far unexploited, interaction exists between the accuracy of 
the travel time model and the ability to pick signals from noise at a particular station.  
This interaction is demonstrated empirically in the simulated model used in Figure 1.

The VISA-CV research prototype has been tested only on a small 2-hour segment of 
parametric data from the IDC (i.e., above-threshold P-wave detections, rather than raw 
waveforms).  The segment includes three events that generated 3 or more arrivals, and the 
prototype recovers all three perfectly. In comparison, the IDC SEL3 bulletin includes 
three additional events which are not well supported by the evidence (see Figure 2).
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Figure 2: Display showing preliminary results from the prototype VISA-CV system. White stars indicate 
true events, yellow stars indicate additional spurious events proposed in SEL3, and red squares show events 
proposed by our research prototype. The inset shows the posterior event distribution near the Sulawesi 
coast; the posterior is bimodal due to uncertainty in the association between events and detections. 

   vDEC

Based upon the above discussions, we believe that the CTBTO could benefit greatly from 
a strategic thrust focused on improving techniques for processing IMS and OSI data sets, 
taking into consideration the state of the art in machine learning, the advances in data 
structures and query techniques, and the shaping of sensor data for more accurate 
exploitation and inference.  The long term goal of such an effort should be to assist the 
CTBTO analyst in making more robust and expedient decisions, aided by a historical 
perspective, in the face of rapidly growing multi-sensory information and the imperative 
for more accurate and timely event characterization.

To facilitate such an endeavor, we propose a virtual Data Exploitation Center (vDEC),
which will connect international experts (both academic and commercial) in different 
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disciplines with the IDC/OSI framework, to assess, develop and implement upgrades to 
the current data processing infrastructure for event detection and localization.  We 
envision such a construct will seamlessly tie in to other National Data Centers to access
the largest available data sets for training algorithms and cross-checking results, and 
incorporate the best practices from multiple sources. vDEC’s charter will be to advance 
the state-of-the-art in data processing in coordination with the operational arm of the IDC 
so as to provide a smooth transition from research into the production environment. A 
viable business model for vDEC is in discussion.   

Conclusions

We have briefly summarized applications of machine learning to CTBT verification, 
including near-term improvements to components of the current IDC pipeline, as 
suggested by several posters in the June ISS Conference, as well as a more substantial 
architectural overhaul based on vertically integrated probabilistic models that connect 
underlying seismic events to measured signals.  Such models could improve seismic 
phase classification, identify spurious associations through global optimization, 
characterize station drift/noise, use the absence of detections to disconfirm hypotheses,
perform time-localized “sub-threshold” signal detections, combine multiple inputs, and 
cumulatively, lower the threshold for event detection and localization.  Taken a step 
further, continuous sensor self-calibration could lead to better sensor design and layout 
and potentially mitigate cost of future network operations. 

To coordinate and guide machine learning and data exploitation methods development in 
support of Treaty verification, we propose a focus center (vDEC) under the CTBTO 
umbrella, which will leverage multidisciplinary expertise to incubate, test and evolve 
next generation data solutions for IDC/OSI missions. 
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